Optical pulse characteristics of sonoluminescence at low acoustic drive levels.
نویسندگان
چکیده
From a nonaqueous alkali-metal salt solution, it is possible to observe sonoluminescence (SL) at low acoustic drive levels with the ratio of the acoustic pressure amplitude to the ambient pressure being about 1. In this case, the emission has a narrowband spectral content and consists of a few flashes of light from a levitated gas bubble going through an unstable motion. A systematic statistical study of the optical pulse characteristics of this form of SL is reported here. The results support our earlier findings [Phys. Rev. E 58, R2713 (1998)], but in addition we have clearly established a variation in the optical pulse duration with certain physical parameters such as the gas thermal conductivity. Quantitatively, the SL optical pulse width is observed to vary from 10 ns to 165 ns with the most probable value being 82 ns, for experiments with krypton-saturated sodium salt ethylene glycol solution. With argon, the variation is similar to that of krypton but the most probable value is reduced to 62 ns. The range is significantly smaller with helium, being from 22 ns to 65 ns with the most probable value also being reduced to 42 ns. The observed large variation, for example with krypton, under otherwise fixed controllable experimental parameters indicates that it is an inherent property of the observed SL process, which is transient in nature. It is this feature that necessitated our statistical study. Numerical simulations of the SL process using the bubble dynamics approach of Kamath, Prosperetti, and Egolfopoulos [J. Acoust. Soc. Am. 94, 248 (1993)] suggest that a key uncontrolled parameter, namely the initial bubble radius, may be responsible for the observations. In spite of the fact that certain parameters in the numerical computations have to be fixed from a best fit to one set of experimental data, the observed overall experimental trends of optical pulse characteristics are predicted reasonably well.
منابع مشابه
Mixture segregation within sonoluminescence bubbles
This paper concerns a relaxation of the assumption of uniform mixture composition in the interior of sonoluminescence bubbles. Intense temperature and pressure gradients within the bubble drive relative mass diffusion which overwhelms diffusion driven by concentration gradients. This thermal and pressure diffusion results in a robust compositional inhomogeneity in the bubble which lasts several...
متن کاملSonoluminescence : how bubbles glow DOMINIK HAMMER and LOTHAR FROMMHOLD
We review recent attempts to elucidate the phenomenon of sonoluminescence in terms of fundamental principles. We focus mainly on the processes which generate the light, but other relevant facts, such as the bubble dynamics, must also be considered for the understanding of the physics involved. Our emphasis is on single bubble sonoluminescence which in recent years has received much attention, b...
متن کاملInertially confined plasma in an imploding bubble
Models of spherical supersonic bubble implosion in cavitating liquids predict that it could generate temperatures and densities sufficient to drive thermonuclear fusion1,2. Convincing evidence for fusion is yet to be shown, but the transient conditions generated by acoustic cavitation are certainly extreme3–5. There is, however, a remarkable lack of observable data on the conditions created dur...
متن کاملImplementation of a Novel Brushless DC Motor Drive based on One-Cycle Control Strategy
In this paper, one-cycle control (OCC), as a constant-frequency PWM control strategy for current control of a six-switch brushless dc (BLDC) motor drive is investigated. Developed current regulator is a unified controller and PWM modulator. Employing the one-cycle control strategy, decreases the torque ripple resulted from the conventional hysteresis current controllers and therefore, the vibra...
متن کاملThe Influence of DC-Link Voltage on Commutation Torque Ripple of Brushless DC Motors with Two-Segment Pulse-width Modulation Control Method
The commutation process causes current ripple to be generated in the drive system of brushless DC (BLDC) motor. This, in turn, leads to output torque ripple. Mechanical vibration and acoustic noise are its influences which are undesirable phenomenon in some applications. A new method is presented in this paper which reduces torque ripple and commutation period in the entire range of motor speed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 63 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2001